Descents of λ-unimodal cyclic permutations

نویسنده

  • Kassie Archer
چکیده

We prove an identity conjectured by Adin and Roichman involving the descent set of λ-unimodal cyclic permutations. These permutations appear in the character formulas for certain representations of the symmetric group and these formulas are usually proven algebraically. Here, we give a combinatorial proof for one such formula and discuss the consequences for the distribution of the descent set on cyclic permutations. Résumé. Nous prouvons une identité conjecturé par Adin et Roichman impliquant les ensembles des descentes des permutations cycliques λ-unimodales. Ces permutations apparaissent dans les formules des caractéres pour certaines représentations du groupe symétrique, et ces formules sont généralement prouvées dans une maniére algébrique. Ici, nous donnons une preuve combinatoire pour une telle formule et discutons les conséquences pour la distribution de l’ensemble des descentes sur des permutations cycliques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unimodal Permutations and Almost-Increasing Cycles

In this paper, we establish a natural bijection between the almost-increasing cyclic permutations of length n and unimodal permutations of length n − 1. This map is used to give a new characterization, in terms of pattern avoidance, of almostincreasing cycles. Additionally, we use this bijection to enumerate several statistics on almost-increasing cycles. Such statistics include descents, inver...

متن کامل

2-stack Sortable Permutations with a given Number of Runs

Using earlier results we prove a formula for the number W(n,k) of 2stack sortable permutations of length n with k runs, or in other words, k − 1 descents. This formula will yield the suprising fact that there are as many 2-stack sortable permutations with k−1 descents as with k−1 ascents. We also prove that W(n,k) is unimodal in k, for any fixed n.

متن کامل

Some Remarks on the Joint Distribution of Descents and Inverse Descents

We study the joint distribution of descents and inverse descents over the set of permutations of n letters. Gessel conjectured that the two-variable generating function of this distribution can be expanded in a given basis with nonnegative integer coefficients. We investigate the action of the Eulerian operators that give the recurrence for these generating functions. As a result we devise a re...

متن کامل

A ug 2 00 5 A Refinement of the Eulerian numbers , and the Joint Distribution of π ( 1 ) and Des ( π ) in S n

Given a permutation π chosen uniformly from Sn, we explore the joint distribution of π(1) and the number of descents in π. We obtain a formula for the number of permutations with Des(π) = d and π(1) = k, and use it to show that if Des(π) is fixed at d, then the expected value of π(1) is d+1. We go on to derive generating functions for the joint distribution, show that it is unimodal if viewed c...

متن کامل

Pattern Avoidance in Permutations: Linear and Cyclic Orders

We generalize the notion of pattern avoidance to arbitrary functions on ordered sets, and consider specifically three scenarios for permutations: linear, cyclic and hybrid, the first one corresponding to classical permutation avoidance. The cyclic modification allows for circular shifts in the entries. Using two bijections, both ascribable to both Deutsch and Krattenthaler independently, we sin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014